Home 성능평가 전처리 |
Classification | Clustering | Association | Numerical Prediction |
Rule | Zero-R, One-R, PART, Ripper(JRip), |
|||
Regression | OLSR, Logistic, Stepwise, MARS, LOESS, SVM |
Linear, | ||
Regularization | Ridge(L2 penalty), LASSO(L1 penalty), Elastic Net, LARS, |
|||
Bayesian | Naive, Gaussian Naive, Multinominal, AODE, BBN, BN, |
|||
Decision Tree | CART, ID3, C4.5, C5.0, CHAID, Decision Stump, M5, Conditional Decision, Tree, |
|||
Instance Based | KNN(IBK), LVQ, SOM, LWL, |
|||
Clustering | k-Means, k-Medians, Hierarchical, EM, |
|||
Association Rule Learning | Apriori, Eclat, |
|||
Artificial Neural Network | Perceptron, MLP, Hopfield Network, RBFN, |
|||
Deep Learning | DBM, DBN, CNN, Stacked Auto-Encoder. |
|||
Ensemble | Boosting, Bagging, AdaBoost, Blending, GBM, GBRT, Random Forest |
|||
Ect | Computational Intelligence, Computer Vision(CV), Natural Language Processing(NLP), Recommender Systems, Reinforcement Learning, Graphical Model |
용어정리
Artificial intelligence = 포괄적인 의미의 인공지능. 꼭 컴터가 아니어도 됨.
Machine Learning = 데이터를 기반으로 일반화 패턴을 찾는 알고리즘.
Deep Learning = 신공망을 기초로 한 인공지능. 이걸로 이제 비정형 데이터도 쉽게 가능.
Data Science = data 를 information 으로 가공하는 일
Big Data = data 가 매우 많음
Model = data 를 일반화해서 얻은 알고리즘의 instance. 모델을 잘 찾는게 목적임.
Feature = data table 의 column 처럼 data 의 변수. Attributes 라고도 함.
Class = classification 에서의 분류값. Label 이라고도 함.
기계학습 분류
Classification
data set 의 features 사이에 class 를 결정하는 decision boundary 를 만드는 것
다른말로 하면 hyperplane of feature space 를 찾는 것
Clustering
Association
Numerical Prediction
Algorithms 종류
1. Regression Algorithms
Ordinary Least Squares Regression(OLSR)
Linear Regression
Logistic Regression
Stepwise Regression
Multivariate Adaptive Regression Splines (MARS)
Locally Estimated Scatterplot Smoothing (LOESS)
2. Instance Based Algorithms(IBK)
K-Nearest Neighbors (KNN, IBK)
Learning Vector Quantization (LVQ)
Self-Organizing Map (SOM)
Locally Weighted Learning (LWL)
3. Regularization Algorithms
Ridge Regression
Least Absolute Shrinkage and Selection Operator (LASSO)
Elastic Net
Least-Angle Regression (LARS)
4. Decision Tree Algorithms
Classification and Regression Tree (CART)
Iterative Dichotomiser 3 (ID3)
C4.5 and C5.0
Chi-squared Automatic Interaction Detection(CHAID)
Decision Stump
M5
Conditional Decision Trees
5. Bayesian Algorithms
Naive Bayes
Gaussian Naive Bayes
Multinomial Naive Bayes
Averaged One-Dependence Estimators (AODE)
Bayesian Belief Network (BBN)
Bayesian Network (BN)
6. Clustering Algorithms
k-Means
k-Medians
Expectation Maximization (EM)
Hierarchical Clustering
7. Association Rule Learning Algorithms
Apriori Algorithms
Eclat Algorithms
8. Artificial Neural Network Algorithms
Perceptron
Back-Propagation
Hopfield Network
Radial Basis Function Network (RBFN)
9. Deep Learning
Deep Boltzmann Machine(DBM)
Deep Belief Network (DBN)
Convolutional Neural Network(CNN)
Stacked Auto Encoders
10. Dimensionality Reduction
Principal Component Analysis (PCA)
Principal Component Regression (PCR)
Partial Least Squares Regression (PLSR)
Sammon Mapping
Multidimensional Scaling (MDS)
Projection Pursuit
Linear Discriminant Analysis (LDA)
Mixture Discriminant Analysis (MDA)
Quadratic Discriminant Analysis (QDA)
Flexible Discriminant Analysis (FDA)
11. Ensemble Algorithms
Boosting
Bootstrapped Aggregation (Bagging)
AdaBoost
Stacked Generalization (blending)
Gradient Boosting Machine (GBM)
Gradient Boosted Regression Tree(GBRT)
Random Forest
12. Other
Computational Intelligence (evolutionary algorithms)
Computer Vision (CV)
Natural Language Processing (NLP)
Recommender Systems
Reinforcement Leanring
Graphical Models
댓글 없음:
댓글 쓰기